

Continuous Degradation Detection (CODED)

Continuous Degradation Detection (CODED) is a forest monitoring application developed for mapping and statistically estimating the areas of forests affected by forest degradation. CODED is open source and can run on the Google Earth Engine [https://earthengine.google.com/]. CODED can be used to monitor and estimate forest degradation and deforestation. For an overview of the CODED methodology please refer to Bullock et al., (2020) [https://doi.org/10.1016/j.rse.2018.11.011].

Background

	Background and Motivation

	Definitions

	Algorithm Description
	Data

	Pre-processing

	Forest classification and characterization

	Change detection

	Versions

Tutorial (Javascript)

	Running CODED using the Javascript API

	Running CODED using a Javascript template

Tutorial (GUI)

	Running CODED using a GUI [https://github.com/openmrv/MRV/blob/main/Modules_2/coded.md#30-running-coded-with-a-graphical-user-interface]

Please refer to the following resources for further background information and tutorials for running CODED:

	OpenMRV [http://openmrv.org/-/modules/mrv/modules_2/continuous-degradation-detection-coded]: An open-source resource for Forest Measurement, Reporting, and Verification (MRV). One Module in OpenMRV is CODED, with detailed background information, parameter descriptions, and examples using Javascript and a graphical user interface.

	E-Learning [https://bit.ly/CODEDe-learning]: An interactive course on CODED narrated by Dr. Eric Bullock.

Background and Motivation

CODED is an algorithm developed to monitor for forest conversion and degradation using time series analysis of Landsat data. The algorithm is based upon previous developments in continuous land cover monitoring [1] and tropical degradation mapping using spectral unmixing models [2] and is built upon the Google Earth Engine processing and data storage system. The algorithm was originally implemented in Python but required large data storage and computing resources for processing the vast amounts of data. Therefore, CODED was ported to the Javascript language for easier use over large areas.

The motivation behind the CODED project was to develop a methodology that could successfully identify low-magnitude forest disturbances in addition to differentiate between deforestation and degradation. While recent scientific and technological advances have greatly improved our ability to map high-magnitude forest clearings [3], no such methodology has proven as reliable for identifying degradation [4]. Despite this, degradation has been estimated to account for 40-212% the carbon emissions of deforestation [5-7]. Degradation events can often be small, subtle, and temporary, making them tricky to identifying with traditional approaches to change detection [8]. CODED attempts to overcome some of these limitations through sub-pixel spectral mixture analysis performed continuously through time. Timeseries analysis allows for subtle changes to be differentiated from ephemeral variations due to clouds or cloud shadows. Multi-temporal information is then used for land cover classification. The result is an approach that has proven successful at being able to differentiate disturbances that do not result in a change in land cover, or degradation, from forest conversion.

While CODED is able to produce disturbance maps that can be used for a variety of purposes, the subtle and temporary nature of degradation events means that errors of omission can potentially be large. Therefore, CODED has been shown to be most successful in the past for stratifying a landscape, which can then be used to derive sample-based estimates of area of degradation.

[1]
Zhu, Z., & Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote sensing of Environment, 144, 152-171.

[2]
Souza Jr, C., Firestone, L., Silva, L. M., & Roberts, D. (2003). Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models. Remote sensing of environment, 87(4), 494-506.

[3]
Hansen, M.C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S. a, Tyukavina, a, Thau, D., Stehman, S. V, Goetz, S.J., Loveland, T.R., Kommareddy, a, Egorov, a, Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 21st-century forest cover change. Science 342, 850–3. doi:10.1126/science.1244693

[4]
Herold, M., Román-Cuesta, R., Mollicone, D., Hirata, Y., Van Laake, P., Asner, G.P., Souza, C., Skutsch, M., Avitabile, V., MacDicken, K., 2011b. Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+. Carbon Balance Manag. 6, 13. doi:10.1186/1750-0680-6-13

[5]
Berenguer, E., Ferreira, J., Gardner, T.A., Aragão, L.E.O.C., De Camargo, P.B., Cerri, C.E., Durigan, M., De Oliveira, R.C., Vieira, I.C.G., Barlow, J., 2014. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Chang. Biol. 20, 3713–3726. doi:10.1111/gcb.12627

[6]
Pearson, T.R.H., Brown, S., Murray, L., Sidman, G., 2017. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag. 12, 3. doi:10.1186/s13021-017-0072-2

[7]
Baccini, A., Walker, W., Carvahlo, L., Farina, M., Sulla-Menashe, D., Houghton, R., 2017. Tropical forests are a net carbon source based on new measurements of gain and loss. Rev. 5962, 1–11. doi:10.1126/science.1252826

[8]
Goetz, S.J., Baccini, A., Laporte, N.T., Johns, T., Walker, W., Kellndorfer, J., Houghton, R.A., Sun, M., 2009. Mapping and monitoring carbon stocks with satellite observations: a comparison of methods. Carbon Balance Manag. 4, 2. doi:10.1186/1750-0680-4-2

Definitions

Definitions related to monitoring forest disturbances.

	Deforestation

	Food and Agriculture Organization of the United Nations (FAO) through the United Nations Framework Convention on Climate Change (2001) [1] describe deforestation as “the direct human-induced conversion of forested land to non-forested land”.

	Forest conversion

	Any disturbance, natural or anthropogenic, that results in a conversion from forest to another land cover. This includes deforestation and a natural conversion such as permanent waterlogging.

	Degradation

	There is no internationally accepted definition of degradation. We define degradation as “any forest disturbance, natural or anthropogenic, which does not result in a land cover change”. The disturbance can cause a change in land use, for example a primary forest turning into a managed forest or partially harvested, but as long as the land cover definition remains forest the event is considered degradation.

	Forest

	We define a forest as any land that contains over 20% canopy cover of trees over 5 meters in height, not being primarily used by urban or agricultural land uses, including natural or non-natural openings, and includes tree plantations.

	Forest Disturbance

	Any short or long term event that causes destructive damage to a forest. The event can be human caused or natural. The event must have a start and end time, in contrast to trend (such as long term greening or species succession due to climate change).

	Secondary Forest:

	The FAO (2003) [2] defines secondary forests as “forests regenerating largely through natural processes after significant removal or disturbance of the original forest vegetation by human or natural causes at a single point in time or over an extended period.”

[1]
FAO, 2015. Forest Resources Assessment 2015: Terms and Definitions, FAO report.

[2]
FAO, 2003. Tropical Secondary Forest Management in Africa:, in: Proceedings on Workshop on Tropical Secondary Forest Management in Africa: Reality and Perspectives. Nairobi, Kenya.

Algorithm Description

Data

CODED was designed to use 30m Landsat data. Before running the algorithm, it is necessary that a multi-dimentional data stack be created. The data stack contains all available Landsat data or, in the Earth Engine implementation, monthly composited data.

[image: _images/stack1.jpeg]

Pre-processing

All available Landsat data is used a converted to surface reflectance using the standard LEDAPS surface reflectance product. The data is first filtered for clouds using CFMask [https://github.com/USGS-EROS/espa-cloud-masking/tree/master/cfmask].

The data are then converted through linear spectral unmixing to represent fractions of spectral endmembers developed in Souza et al., 2005 [http://www.sciencedirect.com/science/article/pii/S0034425705002385], in addition to a self-developed cloud endmember. The 5 endmembers are:

	Green Vegetation

	Non-Photosynthetic Vegetation

	Shade

	Soil

	Cloud

The endmembers are transformed according to the methodology in Souza et al (2005) in to the Normalized Fraction Degradation Index (NDFI). NDFI is generally designed to highlight areas of degraded or cleared forests. NDFI was originally designed for forest monitoring in the Amazon.

[image: _images/fractionImages.jpg]

Forest classification and characterization

To find degraded or damaged forests, the original state of the forest must first be characterized. Generally, an NDFI value near or at 1 is indication of a forested landscape. However, the magnitude of NDFI will depend on the density of the forest. A training period is used to define the ‘general’ state of the forest. To account for clouds, sensor noise, and other factors that cause image-to-image variability, a regression model is fit for every pixel for all the observations in the training period. The regression model is made up of the following components:

	A constant term, representing overall magnitude

	A sine and cosine term, representing seasonal, or intra-annual variability

	A noise term, summarized in the algorithm as the root-mean-squared-error

These regression components are used to differentiate a forest from other land covers. The following chart shows how the land covers differ based on regression RMSE and magnitude based on 1250 training locations across the Amazon basin:

[image: _images/NDFI_mag_rmse_training_4.jpg]
An important step in this process is not just forest classification, but forest characterization. By calculating the training NDFI regression magnitude, change in NDFI can then be calculated relative to original condition. In this manner, degradation is defined as its relation to original state, not just the NDFI at the current time. A good example of this distinction is in forested cerrado, which exists naturally in a state of non-continuous canopy cover. The cerrado will naturally have a lower NDFI than a closed-canopy forest, but that does not mean it is degraded. This difference alludes to the difficulty in classifying a degraded forest based on a single image alone.

To see the difference in forest characterization with canopy cover, see the difference in NDFI between a dense congruent canopy in Rondônia (top), and a thinner forested cerrado in Mato Grosso (bottom, images courtesy Google Earth):

[image: _images/thick_and_thin_exs.jpg]

Change detection

The change detection is performed by using the regression coefficients to predict future NDFI observations. In this way the algorithm is being performed online, meaning that change is monitored for sequentially in time. If new NDFI observations deviate beyond a change threshold for 5 consecutive observations, a disturbance is detected. The change threshold is effectively a control on the maximum allowable residual in a ‘stable’ time series.

[image: _images/flowchart_March2018.png]

Versions

Version history of CODED

There are now three versions of CODED that will produce similar but not identical results:

	Version 0 is the original beta implementation, written entirely in Javascript using the Google Earth Engine API. This version is what is described in the paper [https://doi.org/10.1016/j.rse.2018.11.011].

	Version 1 was created to overcome technical limitations of Version 0. Put simply, Version 0 was not efficient enough to consistently run over large areas. Version 1 makes use of the GEE CCDC implementation [https://developers.google.com/earth-engine/api_docs#eealgorithmstemporalsegmentationccdc] for change monitoring, adapted to create the algorithm described in the CODED paper. Version 1 is what is implemented in the Forest Disturbance Mapping GUI.

	Version 2 is nearly identical to Version 1 but makes use of the CODED API. Version 2 is the most recent version and will be the only version modified moving forward. This version is what is applied in the Javascript tutorial. The main difference between Version 1 and 2 is that version 2 has more options for output layers.

Running CODED using the Javascript API

This tutorial is currently (as of 2-2-2022) under construction.

Running CODED using a Javascript template

A template for running the change detection for CODED Version 2 is found in the coded repo in the file ‘Templates/Change Detection Template’. The repo must be added on Google Earth Engine by following this link [https://code.earthengine.google.com/?accept_repo=users/bullocke/coded]. To run CODED, you must define the parameters below, click ‘Run’, and submit the export Tasks.

Parameters for defining the study area

	Parameter

	Type

	Description

	countryStudyArea

	boolean

	Use a country boundary for the study area

	country

	string

	Name of country to use as study area

	studyArea

	string

	Asset to use if countryStudyArea is false

Note: studyArea will be ignored if countryStudyArea is true.

Parameters for filtering the input Landsat data

	Parameter

	Type

	Description

	startDoy

	integer

	Start day of year

	endDoy

	integer

	End day of year

	startYear

	integer

	Start year

	endYear

	integer

	End year

Parameters for defining a forest mask

	Parameter

	Type

	Description

	useMask

	boolean

	Whether or not to apply a forest mask

	getMaskFromHansen

	boolean

	Whether or not to generate a forest mask from UMD dataset

	forestMask

	string

	Path to asset if using mask and not from UMD

	focalMode

	integer

	Focal mode window size to apply to mask

	treeCoverThreshold

	integer

	Tree cover threshold for UMD dataset

Note: All parameters will be ignored if useMask is false. getMaskFromHansen, focalMode, and treeCoverThreshold will be ignored if forestMask is defined.

Parameters for defining training data

	Parameter

	Type

	Description

	getTrainingFromHansen

	boolean

	Whether or not to sample the UMD dataset for training data

	training

	string

	Path to feature collection with training data

	prepTraining

	boolean

	Whether or not to cache predictor data and export asset

	forestValue

	number

	The number associated with forest points

	numberOfPoints

	number

	Number of points to sample from UMD layer

Note: training will be ignored if getTrainingFromHansen is true. numberOfPoints will be ignored if getTrainingFromHansen is false. The first time running CODED, prepTraining must be true.

Parameters for CODED change detection

	Parameter

	Type

	Description

	minObservations

	integer

	# of consecutive observations to flag a change

	chiSquareProbability

	float

	Threshold that controls sensitivity to change

Parameters for exporting and saving results

	Parameter

	Type

	Description

	outName

	string

	Output asset ID

	numberOfChangesToExport

	integer

	# of disturbances to keep in output dataset

	dateInt

	boolean

	Standardized dates to be 8 bit integers

	maskProb

	boolean

	Mask changes that do not have a change probability of 1

	flipMag

	boolean

	Make NDFI change magnitude positive

	exportLayers

	object

	Layers to export in image stack

Note: dateInt will convert dates so that the date = date - startYear + 1.

Parameters for exporting the results in grid cells

	Parameter

	Type

	Description

	exportInGrids

	boolean

	Whether or not to split output into multiple tasks

	gridFolder

	string

	Path to folder to save gridded results

	gridSize

	number

	Length of grid edge in degrees

	gridPrefix

	string

	Prefix for name to output grid assets

	gridMin

	number

	Index of first grid to export

	gridMax

	number

	Index of last grid to export

	predefinedGrid

	string

	Path to feature collection with predefined grid

Note: All grid parameters will be ignored and the results will be exported in a single task if exportInGrids is false.

Index

Example: Acre, Brazil

Example CODED output in Acre, Brazil.

In the Javascript repository there is an example the data that can be generated with CODED. The data can be visualized in the script ‘coded/examples/Acre, Brazil/Visualize’. Notice the large rectangular areas labeled as deforestation/conversion. These regions are likely pastureland or agriculture. Fire is used to clear the land, but the fire often extends beyond the extent of the planned clearing and into the surrounding forest. This forest is never converted, but does become
degraded. Examples of this can be seen in the CODED results, with degradation being labeled as green and deforestation in red.

[image: _images/acre.jpg]
The training data and code required to run CODED and produce the outputs seen above can be found in ‘coded/examples/Acre, Brazil/Submit CODED’.

Parameters

Parameters for defining the study area

	Parameter

	Type

	Description

	countryStudyArea

	boolean

	Use a country boundary for the study area

	country

	string

	Name of country to use as study area

	studyArea

	string

	Asset to use if countryStudyArea is false

Note: studyArea will be ignored if countryStudyArea is true.

Parameters for filtering the input Landsat data

	Parameter

	Type

	Description

	startDoy

	integer

	Start day of year

	endDoy

	integer

	End day of year

	startYear

	integer

	Start year

	endYear

	integer

	End year

Parameters for defining a forest mask

	Parameter

	Type

	Description

	useMask

	boolean

	Whether or not to apply a forest mask

	getMaskFromHansen

	boolean

	Whether or not to generate a forest mask from UMD dataset

	forestMask

	string

	Path to asset if using mask and not from UMD

	focalMode

	integer

	Focal mode window size to apply to mask

	treeCoverThreshold

	integer

	Tree cover threshold for UMD dataset

Note: All parameters will be ignored if useMask is false. getMaskFromHansen, focalMode, and treeCoverThreshold will be ignored if forestMask is defined.

Parameters for defining training data

	Parameter

	Type

	Description

	getTrainingFromHansen

	boolean

	Whether or not to sample the UMD dataset for training data

	training

	string

	Path to feature collection with training data

	prepTraining

	boolean

	Whether or not to cache predictor data and export asset

	forestValue

	number

	The number associated with forest points

	numberOfPoints

	number

	Number of points to sample from UMD layer

Note: training will be ignored if getTrainingFromHansen is true. numberOfPoints will be ignored if getTrainingFromHansen is false. The first time running CODED, prepTraining must be true.

Parameters for CODED change detection

	Parameter

	Type

	Description

	minObservations

	integer

	# of consecutive observations to flag a change

	chiSquareProbability

	float

	Threshold that controls sensitivity to change

Parameters for exporting and saving results

	Parameter

	Type

	Description

	outName

	string

	Output asset ID

	numberOfChangesToExport

	integer

	# of disturbances to keep in output dataset

	dateInt

	boolean

	Standardized dates to be 8 bit integers

	maskProb

	boolean

	Mask changes that do not have a change probability of 1

	flipMag

	boolean

	Make NDFI change magnitude positive

	exportLayers

	object

	Layers to export in image stack

Note: dateInt will convert dates so that the date = date - startYear + 1.

Parameters for exporting the results in grid cells

	Parameter

	Type

	Description

	exportInGrids

	boolean

	Whether or not to split output into multiple tasks

	gridFolder

	string

	Path to folder to save gridded results

	gridSize

	number

	Length of grid edge in degrees

	gridPrefix

	string

	Prefix for name to output grid assets

	gridMin

	number

	Index of first grid to export

	gridMax

	number

	Index of last grid to export

	predefinedGrid

	string

	Path to feature collection with predefined grid

Note: All grid parameters will be ignored and the results will be exported in a single task if exportInGrids is false.

Estimating Area of Deforestation and Degradation using AREA2 and CODED

[image: _images/area2.png]

By Eric Bullock (bullocke@bu.edu)

Part 1: Running CODED

1.1 The Disturbance Dataset

A tutorial on running CODED using the Javascript interface can be found here [https://coded.readthedocs.io/en/latest/running.html]. This process can be easily facilitated using the user interface provided in the CODED repository in ‘coded/apps/Submit CODED UI’.

[image: _images/interface2.jpg]

The parameters used for this tutorial are shown in the image above, and a task for running CODED can be submitted by clicking the ‘Run’ button. The study region can be defined by drawing a square polygon in the ‘region’ geometry import. Note that this must be a single polygon, and must be contained in the ‘region’ geometry.

The training data used in this analysis can be found in the feature collection: ‘users/bullockebu/amazon/samples/sample2’

1.2 Stratification

In cases in which the classes of interest are small relative to the study region it is generally recommended to use a stratified random sample design. A simple random sample is technically possible but would be less efficient. For this exercise we are assuming that the class of interest is degradation, which is often small in area compared to stable land covers. Therefore, we will be using a stratified random design for sampling and estimation.

The only input needed for this tutorial is a strata map. In our case the strata are Forest, Non-Forest, Deforestation, and Degradation. The population consists of the pixels in the map, and we will use reference observations to estimate the proportions of the population that are from our four classes.

Note that this map should be treated as a stratification: a simple map made with little care for resolving errors and for the primary purpose for stratifying a sample. The CODED results can be turned into a stratification using a few simple heuristic rules for defining the classes. The forest and non-forest classes are the land cover classification of areas without a forest disturbance.

// The results are masked in areas of non change, so first unmask
var unmasked = image.unmask()

// Get each stratum and assign correct label
var forest = unmasked.select('forest_2010').eq(1)
 .and(unmasked.select('dist_1').eq(0))

var nonForest = unmasked.select('forest_2010').neq(1)
 .and(unmasked.select('dist_1').eq(0)).remap([1],[2])

Some areas do not have enough observations after the disturbance to classify as forest/non-forest and therefore do not have a disturbance type. We can either ignore these pixels or use a threshold on the change magnitude as a proxy for deforestation. Here we will use a threshold of 20 to do differentiate degradation and deforestation.

var magThreshold = 20

var degradation = unmasked.select('post_1').eq(1)
 .or(unmasked.select('mag_1').lte(magThreshold))
 .remap([1],[3])

var deforestation = unmasked.select('post_1').gt(1)
 .or(unmasked.select('mag_1').gt(magThreshold))
 .remap([1],[4])

// Combine the strata into a single band image
var strata = ee.Image.cat([forest,nonForest,degradation,deforestation])
 .selfMask()
 .reduce(ee.Reducer.firstNonNull())

// Create an image palette and add to display
var imagePalette = ['#013220', '#8b5d2e', '#5CE5D5','#FF2079']
var strata = ee.Image('projects/AREA2/bullocke/amazon/Amazon_Example_Strata')
Map.addLayer(strata, {min: 1, max: 4, palette: imagePalette}, 'Stratification')

[image: _images/studyArea.jpg]
[image: _images/strataNotZoomed.jpg]
[image: _images/mapEaxmpleLabels.jpg]

Next part: Sample Design and Reference Interpretation

Part 2: Sample Design and Interpretation

Utility Functions

Utility functions for running CODED and dealing with outputs.

To load all the necessary functions for the running CODED, the changeDetection and dataUtils files must be laoded:

var dataUtils = require('users/bullocke/coded:coded/dataUtils')
var codedUtils = require('users/bullocke/coded:coded/changeDetection')

submitCODED

	Usage:

	submitCODED(saveRegion, params, trainingData)

	Description:

	Main function for running CODED.

	Arguments:

	saveRegion (Feature Collection): Geographic region to run the analysis.

params (Dictionary): Dictionary defining CODED parameters.

trainingData (Feature Collection): Feature points containing training data with unique land cover labels identified in the ‘label’ attribute.

Example:

var results = codedUtils.submitCODED(saveRegion, params, trainingData)

makeImage

	Usage:

	makeImage(arrayImage, column, prefix, startYear, endYear)

	Description:

	Make a saveable image from the data array output that is retured by CODED.

	Arguments:

	arrayImage (array): Output array image from CODED

column (int): column of multi-dimensional array image to turn into image.

prefix (string): Prefix to give to all bands in output image

startYear (int): First year in study period.

endYear (int): Last year in study period.

Example:

var disturbances = dataUtils.makeImage(results, 0, 'dist_', params.get('start'), params.get('end'))

reduceBands

	Usage:

	reduceBands(changeBands, params)

	Description:

	Reduce the number of output bands to just save information about the number of disturbances specified in the parameter file.

	Arguments:

	changeBands (image): Images representing CODED output disturbances, magnitude, post-disturbance land cover, and change difference.

parameters (dictionary): CODED parameter dictionary.

Example:

var results = codedUtils.submitCODED(saveRegion, params, trainingData)

var disturbances = dataUtils.makeImage(results, 0, 'dist_', params.get('start'), params.get('end'))
var magnitude = dataUtils.makeImage(results, 1, 'mag_', params.get('start'), params.get('end'))
var postChange = dataUtils.makeImage(results, 2, 'post_', params.get('start'), params.get('end'))
var difference = dataUtils.makeImage(results, 3, 'dif_', params.get('start'), params.get('end'))

var changeBands = disturbances.addBands([magnitude, postChange, difference])
var save_output = ee.Image(dataUtils.reduceBands(changeBands, params))

Sampling

Instructions on generating a sample.

All maps that were constructed from classification of remote sensing imagery will contain errors. These errors are inevitable and are due to many reasons including missed clouds, similarity between classes, and climate variability. Therefore, areas calculated directly from the map through “pixel counting” will be incorrect. It is instead recommended that calculation of areas, whether it be land cover or land cover change, be produced by applying an unbiased estimator to a reference sample [1]. Sample based estimation allows for the calculation of unbiased area estimates in addition to the quantification of uncertainties associated with the areas.

Area estimation can be difficult when the class of interest is small relative to the population. This is generally the case when comparing the area of degraded forests to that of an entire country or region. Remote sensing data allows for the spatially explicit stratification of a landscape, with small land cover or change classes represented by unique strata. These strata can then be sampled to ensure that the small land classes are represented. This is called stratified sampling, with areas being calculated through the stratified estimator [2].

This section is incomplete. Tools and guidance for sampling and estimation on the Earth Engine can be found in the Google Earth Engine Accuracy and Area Estimation Toolbox (AREA2) [https://github.com/bullocke/area2].

[1]
GFOI, 2016. Integration of remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests: Methods and Guidance from the Global Forest Observations Initiative 2, 226.

[2]
Cochran, W.G., 1977. Sampling techniques. New York John Wiley Sons.

Estimating Area of Deforestation and Degradation using AREA2 and CODED

[image: _images/area2.png]

By Eric Bullock (bullocke@bu.edu)

The stratified estimator of a mean can be expressed as:

$$\ \hat{A}j = A{tot} \Sigma_i W_i \frac{n_{ij}}{n_i}$$

The interpreted reference sample can now be used to estimate accuracy and area using a stratified estimator. This process is facilitated by the ‘stratifiedEstimator’ function, which takes a single dictionary containing inputs:

/**
* Stratified estimator from:
* Cochran, W. G. (2007). Sampling techniques. John Wiley & Sons.
* Olofsson, P., Foody, G. M., Stehman, S. V., & Woodcock, C. E. (2013). Making
* better use of accuracy data in land change studies: Estimating accuracy and
* area and quantifying uncertainty using stratified estimation. Remote Sensing of
* Environment, 129, 122-131.
*
*
* Estimate mean, variance, and map accuracies derived from a stratified random sample.
*
*
*
* @param {Dictionary} options parameter object
* @key {ee.Image} stratifiedMap strata map from which the samples were derived
* @key {ee.FC} referenceSample reference sample with labels provided in properties
* @key {String} referenceLabel property name of reference labels
* @key {Number} scale spatial resolution to operate on. If null the resolution is calculated
* @key {Boolean} accuracy compute map accuracy in addition to areas
*
*
* @returns {Dictionary} output Dictionary containing estimates
* @key {Dictionary} accuracies overall, users, and producers accuracies and standard errors
* @key {Dictionary} areas estimated areas and standard errors
* @key {Dictionary} errorMatrices confusion matrices in sample counts and area proportions
* @key {Dictionary} inputs derived input parameters from map and reference data
*/

As can be seen in the documentation, the function takes a single dictionary defining the parameters and returns a dictionary containing the estimates and error matrices.

var estimators = require('projects/AREA2/public:utilities/estimators')

// Define path to sample with reference labels
var referenceLabels = ee.FeatureCollection('projects/AREA2/bullocke/amazon/bullocke_11_12_2019_2')

var estimates = estimators.stratifiedEstimator(
 {stratifiedMap: strata,
 referenceSample: referenceLabels,
 referenceLabel: 'reference',
 accuracy: true
})

print(estimates)

In the console you will see a dictionary containing the resulting estimates. The AREA2 repo also containings a plotting module to visualize the results. Note that by transposing the matices the tables are displayed in the typical format, with columns representing reference labels and rows the strata labels:

var plotting = require('projects/AREA2/public:utilities/plotting')
print('Error Matrices: Sample Counts (Top), Area Weights (Bottom)')
plotting.makeTable({matrix: ee.Array(estimates.errorMatrices.sampleCounts).transpose(),
 title: 'Sample Counts'})

plotting.makeTable({matrix: ee.Array(estimates.errorMatrices.areaProportions).transpose(),
 title: 'Sample Counts'})

In the console you will see two error matrices:

[image: _images/errorMatrices2.jpg]

Similarly the plotting module can plot bar plots with error bars to display the estimates of area and accuracy:

plotting.doBar({plotType: 'areaEstimates', results: estimates})
plotting.doBar({plotType: 'users', results: estimates})
plotting.doBar({plotType: 'producers', results: estimates})
plotting.doBar({plotType: 'mapBias', results: estimates})

[image: _images/barEstimates.jpg]
[image: _images/mapBias.jpg]

Note a few things about these estimates:

First and importantly, these estimates are unbiased with measures of uncertainty expressed as confidence intervals. For the forest and non-forest classes, the area estimates have relatively high precision. The disturbance classes are estimated with lower precision but are still statistically significant. The disturbance classes have lower precision to due sample units labeled as change in the reference data but from a stable map strata. Or in other words, map errors. Errors are common due to the inherent difficulty in translating reflected sunlight to surface processes, especially with regards to degradation. The next section will go over ways of improving the precision in the estimates despite these difficulties.

The overall accuracy of the map was 82%, while the User’s Accuracies and Producer’s Accuracies ranged from 51% to 93% and 23% to 92%, respectively. Depending on your objective, specific measures of accuracy may or may not be relevant. For example, if your objective is to use the map product for spatial analysis strictly to due with deforestation, providing an overall accuracy would not effectively characterize the map accuracy of the deforestation class, which is 51% (the User’s Accuracy). The low Producer’s accuracy of deforestation was low due to errors of omission. However, 11 of the 14 errors of omission of deforestation were from the degradation class, indicating that the disturbance was found but classified incorrectly. The Producer’s Accuracy is improved if you combine the two disturbance classes (~64%)

The areas calculated from the sample data and stratified estimator were not statistical different than the map areas for the degradation and non-forest classes. However, the map significantly overrepresented stable forest and underrepresented deforestation. The statistical estimator accounted for this bias, which is why these results represent unbiased area estimates.

2.4 Improving Precision

These results were created quickly for this tutorial, and might not be satisfactory for scientific analysis. Precision in the estimates can be improved by increasing the sample size. To demonstrate this we can calculate the standard error standard error of degradation with the sample presented above, and with the same sample but with the sample units used twice in the stratified estimator:

var referenceLabels = ee.FeatureCollection('projects/AREA2/bullocke/amazon/bullocke_11_12_2019_3')
var estimates = estimators.stratifiedEstimator(
 {stratifiedMap: strata,
 referenceSample: referenceLabels,
 referenceLabel: 'reference'
 scale: 30
})
print('Area: 1x sample',
 ee.Dictionary(estimates.areas.estimates.proportions).get('3'))
print('Standard Error: 1x sample',
 ee.Dictionary(estimates.areas.standardErrors.proportions).get('3.0'))

In the console you will see the area estimate is 0.117, and standard error is 0.018. Now double the sample units (this is just to demonstrate the influence of sample size. In actual analysis, this should be done from the first derivation of the sample!)

// Double the sample units
referenceLabels = referenceLabels.merge(referenceLabels)
var estimates = estimators.stratifiedEstimator(
 {stratifiedMap: strata,
 referenceSample: referenceLabels,
 referenceLabel: 'reference',
 scale: 30
})
print('Area: 2x sample',
 ee.Dictionary(estimates.areas.estimates.proportions).get('3'))

print('Standard Error: 2x sample',
 ee.Dictionary(estimates.areas.standardErrors.proportions).get('3.0'))

You will see the area estimate does not change, however the standard error is reduced to 0.013. This represents a 28% reduction in the standard error.

Part 3: Calculating Activity Factors

Finally, this sample can be used to estimate specific disturbance types or drivers, as long as that information was saved during reference interpretation. Using the tool demonstrated here, the disturbance type is saved in the attribute ‘refDistType’. A little data management is necessary to convert the attribute from string values to numeric so that it will work with the estimator. You can then apply the sample to the estimator, without the flag to calculate accuracies as the reference labels no longer correspond to the strata labels.

// Remap reference disturbance type so it's numeric
var distTypes = ee.Dictionary(referenceLabels.aggregate_histogram('refDistType'))

// Save the keys so we can use them later
var distTypeKeys = distTypes.keys()
referenceLabels = referenceLabels.remap(
 distTypeKeys,
 [0,1,2,3,4,5,6,7],
 'refDistType')

// Apply the sample to the stratified estimator
var estimates = estimators.stratifiedEstimator(
 {stratifiedMap: strata,
 referenceSample: referenceLabels,
 referenceLabel: 'refDistType',
 scale: 30,
})

// Plot the area estimates with the original labels and without the stable class
plotting.doBar({
 plotType: 'areaEstimates',
 results: estimates,
 remove: ["0"],
 classLabels: distTypeKeys.removeAll([distTypeKeys.get(0)])
})

[image: _images/distTypes.jpg]

Note that, as before, the confidence intervals can be reduced with a larger sample size. The 95% confidence interval for Development, Other Anthropogenic, and Other Deforestation are not statistically different than 0.

Once again, we can simulate the effect of an increase in sample size by duplicating the reference samples. Note the increase in precision (or decreasing in confidence intervals) when duplicating the reference samples 3 times, to get a total sample of 920 sample units. Doing this can guide the development of future sample designs in order to reach a desired level of precision.

var referenceLabels = ee.FeatureCollection('projects/AREA2/bullocke/amazon/bullocke_11_12_2019_2')
referenceLabels = referenceLabels.merge(referenceLabels).merge(referenceLabels).merge(referenceLabels)

// Remap reference disturbance type so it's numeric
var distTypes = ee.Dictionary(referenceLabels.aggregate_histogram('refDistType'))

var distTypeKeys = distTypes.keys()
referenceLabels = referenceLabels.remap(
 distTypeKeys,
 [0,1,2,3,4,5,6,7],
 'refDistType')

var estimates = estimators.stratifiedEstimator(
 {stratifiedMap: strata,
 referenceSample: referenceLabels,
 referenceLabel: 'refDistType',
 scale: 30,
 // accuracy: true
})

[image: _images/distTypesMerged.jpg]

Accuracy and Estimation

Instructions on calculating accuracies and area estimation.

This section is incomplete. Tools and guidance for sampling and estimation on the Earth Engine can be found in the Google Earth Engine Accuracy and Area Estimation Toolbox (AREA2) [https://github.com/bullocke/area2].

Timeseries Examples

Example of degradation events and their corresponding Landsat time series can be found in the javascript repository [https://code.earthengine.google.com/?accept_repo=users/bullocke/coded] in the file ‘coded/examples/1. Timeseries Examples’. The code can be run by selecting ‘Run’ at the top of the page (1 in figure below), then choosing an example in the drop down menu (2).

[image: _images/timeSeries1.jpg]
The map will center on the location of degradation and a red point will appear on the map corresponding to the time series displayed in the panel (1 in figure below). Each data point in the time series plot represent a single observation. Optionally, you can choose the image stretch for when Landsat images are loaded (2). The Landsat images can be loaded by clicking on a data point in one of the time series (3). The examples can be quickly navigated using the ‘previous’ and ‘next’ buttons (4).

[image: _images/timeSeries3.jpg]

Interpretation

Sample interpretation

This section is incomplete. Tools and guidance for sampling and estimation on the Earth Engine can be found in the Google Earth Engine Accuracy and Area Estimation Toolbox (AREA2) [https://github.com/bullocke/area2].

Estimating Area of Deforestation and Degradation using AREA2 and CODED

[image: _images/area2.png]

By Eric Bullock (bullocke@bu.edu)

This tutorial will demonstrate how the Accuracy and Area Estimation Toolbox (AREA2) can be used to estimate map accuracy and disturbance area using a dataset created with the Continuous Degradation Detection (CODED [https://coded.readthedocs.io/en/latest/])1 methodology on the Google Earth Engine (GEE [https://earthengine.google.com/])2. The equations used in this exercise are presented in Cochran 19773 and described in a remote sensing context in Olofsson 20144.

I refer users to the AREA2 documentation [https://area2.readthedocs.io/en/latest/overview.html] for background information on the rational of using statistical inference for assessing map accuracy and area estimation. Definitions for select statistical terminology is provided for words in italics and a more detailed description of terms can be found in the AREA2 documentation.

Disclaimers:

	The data presented is here for the purpose of demonstration. Therefore, it should not be considered reflective of the actual land change dynamics of the region.

	All calculations should be validated using the original calculations, and it is the user’s responsibility to ensure the calculations produced using AREA2 are correct.

Objectives and Tutorial Parts:

	Part 1: CODED Create a spatial dataset of deforestation, degradation, forest, and non-forest in the Brazilian Amazon using CODED.

	Part 2: Sample Design and Interpretation Create a sample under stratified random sampling and assign reference labels using the AREA2 toolbox.

	Part 3: Estimation of Activity Data and Accuracy Use AREA2 to estimate areas of activity data and map accuracies.

Parameters

Parameters from running CODED

	Parameter

	Type

	Description

	thresh

	int

	change threshold defined as a residual normalized by the training model RMSE

	consec

	int

	consecutive observations beyond change threshold to trigger a change

	trainlength

	int

	number of years in training period

	minYears

	int

	minimum years between disturbances

	start

	int

	beginning year of study period

	end

	int

	ending year of study period

	trainDataStart

	int

	beginning year of time period associated with training data

	trainDataEnd

	int

	ending year of time period associated with training data

	soil

	list

	soil endmember reflectance value for each band

	gv

	list

	green vegetation endmember reflectance value for each band

	npv

	list

	non-photosynthetic vegetation endmember reflectance value for each band

	shade

	list

	shade endmember reflectance value for each band

	cloud

	list

	cloud endmember reflectance value for each band

	cfThreshold

	float

	minimum threshold to remove clouds based on cloud fraction

	forestLabel

	int

	label of forest in training data

	numChanges

	int

	maximum number of changes to keep when exporting

	window

	int

	the max number of years to use in the monitoring period at any given time

	minObs

	int

	the minimum number of observations to fit a model for training

Continuous Degradation Detection (CODED)

This is the documentation for the Continuous Degradation Detection (CODED) algorithm. CODED is open source and can run on the Google Earth Engine [https://earthengine.google.com/]. CODED can be used to monitor and estimate forest degradation and deforestation.

Background

	Background and Motivation

	Definitions

	Timeseries Examples

	Versions

Documentation

	Algorithm Description
	Data

	Pre-processing

	Forest classification and characterization

	Change detection

	Training Data

Tutorial

	Estimating Area of Deforestation and Degradation using AREA2 and CODED
	Disclaimers:

	Objectives and Tutorial Parts:

	Estimating Area of Deforestation and Degradation using AREA2 and CODED

	Part 1: Running CODED
	1.1 The Disturbance Dataset

	1.2 Stratification

	Next part: Sample Design and Reference Interpretation

	Estimating Area of Deforestation and Degradation using AREA2 and CODED

	Part 2: Area and Accuracy Estimation.
	2.1 Creating the sample

	2.2 Sample Interpretation

	Next Part: Estimation

	Estimating Area of Deforestation and Degradation using AREA2 and CODED
	2.4 Improving Precision

	Part 3: Calculating Activity Factors

Running CODED

Instructions on running CODED.

First, load the CODED module:

var codedUtils = require('users/bullocke/coded:coded/changeDetection')

Define the study area, with ‘region’ being an import or path to a feature.

var saveRegion = ee.FeatureCollection(region)

Define the sample name and parameters:

var sampleName = ee.FeatureCollection('users/bullockebu/amazon/samples/sample1')

var params = ee.Dictionary({
 'consec': 3,
 'thresh': 3,
 'start': 1990,
 'end': 2018,
 'trainDataEnd': 2016,
 'trainDataStart': 2013,
 'trainLength': 3,
 'soil': [2000, 3000, 3400, 5800, 6000, 5800],
 'gv': [500, 900, 400, 6100, 3000, 1000],
 'npv': [1400, 1700, 2200, 3000, 5500, 3000],
 'shade': [0, 0, 0, 0, 0, 0],
 'cloud': [9000, 9600, 8000, 7800, 7200, 6500],
 'cfThreshold': .05,
 'forestLabel': 1,
 'minYears': 3
 })

Call the main function of CODED to retrieve the results:

var results = codedUtils.submitCODED(saveRegion, params, trainingData)

The output of the change detection is an array image [https://developers.google.com/earth-engine/arrays_array_images]. At every pixel location there is an array matrix, with a row for every year in the study period and the columns corresponding to the a change flag (1 = change, 0 = no change), change magnitude, post-change land cover, NDFI difference band, and a forest flag (1 = forest in training period).

	Column

	Range

	Description

	1

	0-1

	Change flag with 1 indicating change

	2

	0-255

	Change magnitude with higher values representing higher magnitude

	3

	1-#C

	Post-change land cover corrresponding to label in training data (1 - # of classes)

	4

	0-255

	Difference in NDFI expressed as percent NDFI magnitude after disturbance compared to before

	5

	0-1

	Forest flag with 1 representing forest in training period

The data array that CODED returns can not be saved as an output or asset. The array image needs to be projected as a saveable 3-D image (x, y, and band dimensions).

First, it helps to define a function to create band names:

var makeBands = function(start, end, prefix) {
 var bandSeq = ee.List.sequence(start, end)
 var bandList = bandSeq.map(function(i) {
 return ee.String(prefix).cat(ee.String(i).slice(0,4))
 })
 return bandList
}

Next, use a combination of arraySlice, arrayProject, and arrayFlatten to turn one column of the array image into a 3D image with one band for each year:

var makeImage = function(arrayImage, column, bandPrefix, start, end) {
 var bandList = makeBands(start, end, bandPrefix)
 return arrayImage.arraySlice(1, ee.Number(column), ee.Number(column).add(1))
 .arrayProject([0])
 .arrayFlatten([bandList])
}

var column = 0 // change flag
var bandPrefix = 'distFlag_' // band prefix
var start = params.get('start') // first year of study period
var end = params.get('end') // last year of study period

var distFlagImage = makeImage(results, column, bandPrefix, start, end)

If you create images of all the outputs the images will contain a lot of bands - likely not all of them are necessary. The dataUtils file contains a function to reduce the bands to 4 times the number of changes specified in the parameter dictionary. The output bands are the date of first change, magnitude of first change, the land cover after the first change, the difference in NDFI from before and after the change, the date of second change, and so on. In the following example the CODED output array is turned into 5 images, and then reduced to a smaller image while keeping all the forest flags and attaching the parameter dictionary to the image attributes.

var dataUtils = require('users/bullocke/coded:coded/dataUtils')

var disturbances = dataUtils.makeImage(results, 0, 'dist_', start, end)
var magnitude = dataUtils.makeImage(results, 1, 'mag_', start, end)
var postChange = dataUtils.makeImage(results, 2, 'post_', start, end)
var difference = dataUtils.makeImage(results, 3, 'dif_', start, end)
var forestFlag = dataUtils.makeImage(results, 4, 'forest_', start, end)
var disturbanceBands = disturbances.addBands([magnitude, postChange, difference])

var saveOutput = ee.Image(dataUtils.reduceBands(ee.Image(disturbanceBands), params)
 .setMulti(params))
 .addBands(forestFlag)

The results can then be submitted as a task:

Export.image.toAsset({
 image: saveOutput,
 description: 'imageDescription',
 assetId: 'path/imageDescription',
 maxPixels: 1000000000000,
 scale: 30,
 region: saveRegion.geometry(),
})

Estimating Area of Deforestation and Degradation using AREA2 and CODED

[image: _images/area2.png]

By Eric Bullock (bullocke@bu.edu)

Part 2: Area and Accuracy Estimation.

2.1 Creating the sample

The goal of this exercise is to estimate the area of deforestation and degradation with confidence intervals.. These estimates are not as useful if the confidence intervals are large, or in other words if the estimates have low precision. Therefore, we seek to design a sample that ensures we can meet a target level of precision. To calculate the total sample size n we can use Equation 5.25 in Cochran 1977:

$$\ n \approx \left(\frac{\Sigma W_i S_i}{S\hat({P})}\right)^2$$

where,

$$\ S_i = \sqrt{p_i(1 - p_i)}$$

Si = Standard error for stratum i

Wi = Area weight for stratum i

pi = Proportion of the target class in stratum i

S($$\hat{P}$$) = Target standard error of target class

We have helper functions for doing these calculations in the AREA2 repository, the first of which is for creating a list of the area weights. The following code will load utility functions and get a list of area weights:

var sampleUtils = require('projects/AREA2/public:utilities/sampling')
var miscUtils = require('projects/AREA2/public:utilities/misc')

var areaInfo = ee.Dictionary(miscUtils.getAreaWeights(strata))
var areaWeights = ee.Dictionary(areaInfo.get('areaWeights'))

var areaList = areaWeights.keys().map(function(key) {
 return areaWeights.get(key)
})

The parameters noted above should be approximated by using previous studies or knowledge. In our case, we will target Degradation, a class that has historically been proven difficult to reliably map5. Therefore, we will assume a target user’s accuracy of 60%, with 1 error of omission per 100 sample units from each stable class and 10 in the deforestation class. Note that these are rather optimistic assumptions, given the inherent difficulty in accurately mapping
degradation. Regardless, this should give us a reasonable sample size for this exercise. Solving the equation for the number of sample units gives us:

$$\ n \approx \left(\frac{(0.1 * 0.39) + (0.1 * 0.46) + (0.49 * 0.12) + (0.3 * 0.02)}{0.01}\right)^2 = 224 \text{ sample units} $$

The sample utility module has a function for calculating the equation above, however it assumes the inputs are all javascript
arrays. The following code asynchronously retrieves the area weights, solves the equation for the n, and prints an allocation that would be based on the proportional area of each stratum:

var classList = [1, 2, 3, 4]
var targetUsers = .6
var propTarget = [.01, .01, targetUsers, .1]
var targetSE = .01

areaList.evaluate(function(jScriptList) {
 var sampleCount = sampleUtils.strClassArea(classList,propTarget,jScriptList, targetSE)
 print('Recommended sample count: ', sampleCount)

 var propAllocation = jScriptList.map(function(stratum) {
 return ee.Number(stratum).multiply(ee.Number(sampleCount))
 })

 print('Proportional allocation: ', propAllocation)
})

As displayed on the dashboard, the recommended sample size is 226 total sample units, which, slightly different than when calculated by hand due to rounding. If allocated proportional to strata areas, this gives 90 sample units to the Forest stratum, 105 in the Non Forest, 27 in Degradation, and 4 in Deforestation. “Good practice”6 recommends no less than 30 sample units for a class you wish to estimate, with proportional allocation to the remaining samples. Using good practice allocation results in 90, 80, 30, and 30 sample units for the Forest, Non Forest, Degradation, and Deforesation classes, respectively. The Earth Engine ‘stratifiedSample’ [https://developers.google.com/earth-engine/api_docs#ee.image.stratifiedsample] function can then be used to select a sample. The following code creates a sample, shuffles their order, and adds them to map:

var allocation = [90,80,30,30]

var sample = strata.rename('strata').stratifiedSample({
 numPoints: 0, // 0 points for pixel values not in 'allocation'
 classValues: classList, // pixel values
 classPoints: allocation, // sample allocation
 scale: 30, // Landsat spatial resolution
 geometries: true
})

// Shuffle it so they are in random order and have an ID attribute
sample = sampleUtils.shuffle(sample)

// Assign property for visualizing
var imagePalette = ['#013220', '#8b5d2e', '#5CE5D5','#FF2079']
var sampleWithColor = sample.map(function(i) {
 var sampleClass = ee.Number(i.get('strata')).subtract(1) // Using the class number as an index
 return i.set('color', {
 color: ee.List(imagePalette).get(sampleClass)
 })
})

// Add to map
Map.addLayer(sampleWithColor.style({styleProperty: 'color'}), {}, 'Stratified Sample')

You should see the sample units on the map. The below figure shows the sample units (left) and corresponding strata (right):

[image: _images/sampleUnitsCombined.jpg]

2.2 Sample Interpretation

There are numerous tools for providing reference labels to sample units, including TimeSync [http://timesync.forestry.oregonstate.edu/], Collect Earth [http://www.openforis.org/tools/collect-earth.html], Collect Earth Online [https://collect.earth/], and AcATaMa [https://github.com/SMByC/AcATaMa]. Considerations for sample interpretation are beyond the scope of this tutorial, but a simple tool is provided in AREA2, and a tool focused on interpreting deforestation and degradation can be found
in the CODED repository. For this exercise we will use the later, which can be found in ‘users/bullocke/coded:coded/Interpretation Tool’.

[image: _images/sample42_GE_SL.jpg]

The path to the sample made in this tutorial should be put in the ‘Path to FC’ box, and the path to a GEE folder you have write access should be put in the ‘Save Folder’ textbox. This folder should have no files in it, and a new feature will be saved there for each interpreted sample unit.

For each sample, you will see the sample in red, and a time series of NDFI and surface reflectances for the sample location on the right side of the panel. Each observation in the time series corresponds to the location of the sample unit. If you click on the observation on one of the time series the corresponding Landsat image will show on the map:

[image: _images/sample42_landsat_SL_label.jpg]

Using this information, fill in the options in the ‘Sample Interpretation’ section of the widget on the map with information that accurately represents the sample units. The options include the land cover, change type, change driver, year of change, interpreter confidence, and notes. In essence, you are using the Landsat time series data to reconstruct the disturbance trajectory of the sample unit.

[image: _images/sample42_landsat_2014_AfterSL_label2.jpg]

Ideally, this process should be slow and rigurous with each sample unit interpreted by multiple trained technicians. Please refer to Olofsson 20146 for details on “Good Practices” for providing reference labels.

[image: _images/sample42_landsat_fire2016_label2.jpg]

After each sample unit, use the ‘Save’ button to save a copy of that interpreted sample. When you are done with all of the samples, the ‘Export All’ button will export a single feature collection with all the interpreted samples in
the save folder. This feature collection can be used for estimation.

Next Part: Estimation

Part 3: Estimation of Activity Data and Accuracy

Sampling Background

Background on sampling and estimation.

Training Data

Training data can be created in a variety of ways, but the algorithm expects a Feature Collection of points with unique land cover labels identified with a ‘label’ attribute. For example, forests can have a ‘label’ attribute of 1, agriculture as 2, and so on. One simple method to develop training data is to simply use the data on the Google Earth Engine and creating a Feature Collection for each land cover.

	While in the Earth Engine, navigate to Geometry Imports -> + new layer.

	In the layer configuration, given the layer a name, set the type to FeatureCollection, and give it a ‘label’ property with a unique integer identifier.

[image: _images/trainingConfig.jpg]

	Using the data available on the Earth Engine, such as Landsat, Sentinel-2, and the high resolution background imagery, add training points that correspond to a certain time period. For example, all of the training points could correspond to the land cover from 2012-2014. See the official Earth Engine tutorials [https://developers.google.com/earth-engine/tutorial_api_04] for information on finding and displaying Image Collections.

[image: _images/training.png]

	Create training data for all land covers in the study region. The land covers are necessary to differentiate between forest conversion and a disturbance that does not result in a change in land cover.

	The training features can be combined with the ‘merge’ method. For example, assuming ‘forest’, ‘pasture’, ‘agriculture’, ‘urban’, and ‘water’ all represent Feature Collections:

var training = forest.merge(pasture)
 .merge(agriculture)
 .merge(urban)
 .merge(water)

	The outputs should then be saved as an Earth Engine asset.

Export.table.toAsset({
 collection: training,
 description: 'sample',
 assetId: 'sample'
})

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Continuous Degradation Detection (CODED)

 		
 Background and Motivation

 		
 Definitions

 		
 Algorithm Description

 		
 Data

 		
 Pre-processing

 		
 Forest classification and characterization

 		
 Change detection

 		
 Versions

 		
 Running CODED using the Javascript API

 		
 Running CODED using a Javascript template

_static/up-pressed.png

_static/up.png

_images/NDFI_mag_rmse_training_4.jpg
250

200

150

100

50

0.8

o
o

NDFI RMSE

o
IS

0.2

0.0

Forest Model Classification

-
[
-
m

I
ol
.
N
Bl |
N
‘mn
mn
[
]
-
| |
.
I
i

*
* *
* > >
W *
* K *
* *
* #*
*
ok [FS *x *
*
*
* * X *
* . * * *
* * e
I *
* * S *
L * o
N
* +
A
* +
* * 1S . O
*
* pOBE st "
* T A ok
s + *
o A
at i o P A
4 * A A * TR SR e 0
+ +
+ ™ +
** Y . . I BE +
* * Ak 8 A st o lrid
% e a, 4 aa " Aty **.Qt*+;+
* ok A 408 toag + + e § * 4
N a4 ot g L -
* *A{? A A A ° e +$++ <
A ¥
A A o ..o.-.+‘...+ o
A M 'S A A .
* 4 A A 2 o A A # g+t

KA M = s A % e % o ~a

* s o % o o8 &m
i N + et _i‘
*

A "oaol.%.
* L
L L4
*

NDFI Magnitude

H Forest

I Water

I Agriculture

Il Development
I Cerrado/Grassland

_images/barEstimates.jpg
Area (ha)

Unbiased Area Estimates (95% Confidence Interval)

10,000,000

5,000,000

Users Accuracy [0-1]

Producers Accuracy [0-1]

Map Class

Users Accuracy (£95% Confidence Interval)

1.0

0.5

0.0

Map Class

Producers Accuracy (95% Confidence Interval)
1.0

0.5

0.0

Map Class

_images/distTypes.jpg
Area (ha)

1,400,000
1,200,000
1,000,000
800,000
600,000
400,000
200,000

0

-200,000

Area Estimates

++ﬁi

-

Agriculture

Development

Fire (Anthropogenic)

Other Anthropogenic

Map Class

Other Deforestation

Pasture

Selective Logging

_images/acre.jpg
Select Stretch &

- Click a point on the time series plot to visualize corresponding Landsat image.

NOFI

® NDFI

0 ommmﬂ'ﬂr

o. <

1985 1990 1995 2000 2008 2010 2015

Disturbance Class 1995 2000 2005 2010 2015

Il Degradation
I Forest Conversion

First Disturbance Date

W 2000
W 2012

Disturbance Magnitude -
0 (Low)
M 50 (High) »

1985 1990 199 2000 2008 2010 2015

L
Google Re

_images/area2.png
U AR E A

Area Estimation & Accuracy Assessment

_images/distTypesMerged.jpg
Area (ha)

1,200,000

1,000,000

800,000

600,000

400,000

200,000

Area Estimates

'
ialﬁi

Agriculture

Development

Fire (Anthropogenic)

Other Anthropogenic

Map Class

Other Deforestation

Pasture

Selective Logging

_images/errorMatrices2.jpg
Error Matrices:

1.0
68

1.0
0.314
0.022
0.018
0.001

Sample Counts (Top) Area Weights (Bottom)

2.0

2.0

77

0.032

0.43
0.006
0.001

3.0

20

3.0
0.042
0.006
0.062
0.004

4.0

4.0

JSON

11
16

0.009
0.006
0.034
0.014

_images/flowchart_March2018.png
1. Fit regression models to NDFI and
endmember proportions

/

+ Data Observation
—— OLS Model

02
04

NDFI or Proportion

\

1
Day of Year

|

e

4. Disturbance is detected if 5 NDFI
observation a under the change
threshold

1.0
08
06
04
02
00 .

-0.2

-0.4

™~

NDFI

I Change magnitude
< NDFI (Disturbance)

5. Characterize post-disturbance
landcover with regression models for
NDFI and the endmember

proportions
2. Use coefficients as inputs to Random
Forests classifier 10
¥ ¥ 5 o
[Non-Forest | | Forest | 5
S 04
l o 02
Z 00
3. Predict future NDFI in monitoring 002
2 -o.
period S
~0.4] I Postdisturbance recovery
NDFI
1.0 GV I
NPV
08 % Soil T
06 Shade]
T 0.4
% 0.2
00 6. Classify post-disturbance land cover
-0.2{ --- Change Threshold ¥
_04] *+ Predicted Data [Non-Forest] Forest]
[Deforestation | [Degradation |

_images/mapBias.jpg
Area (ha)

1,000,000

-1,000,000

Difference between map and estimated areas

Map Class

_images/mapEaxmpleLabels.jpg
Il Forest

B Non-Forest
Degradation
Deforestation

_images/fractionImages.jpg
Soil
0 1

Landsat 5-4-3

_images/interface2.jpg
o
© 9 M v B comyie v sone | i

¥ | Training Data: users/bullockebu/amazon/samples/sample2
Saniana = =
ey —
b
thresh: | 4
Braganca
z start 2010
A"aggqeuao:amnmrvm
- Belém end: 2019
Abaetetube
trainDataStart: | 2013
S;L\H,”j‘ trainDataEnd: 2016
\ trainLength: | 3

forestLabel: | 1

window: 2

minvears: | 3

Pecteias

o) r

¢ Caxia: numMChanges: | 1
=

presidente

Maraba Buga @ ™nobs 6
Imperatiz
o) =) et StartDOY: | 1
Colmas
/—/ B endDOY: 365

Outiandia
doNorte

e
S~ d:?i.‘;\, Run CODED

o Output Name: CODED_Results

_images/sample42_landsat_SL_label.jpg
' Input and Outputs
|

Path to FC:

Save Folder:

Sample Interpretation

Previous

Land Cover &

Any notes?

Change Type 5

Export All

i T

projects/AREA2/bullo

projects/AREA2/bullo

42 Next

Year 5
Confidence? &

None 5 None 5

Irmanary @2010 OCNES 7 Airhiie | andeat / Canarni

=

r

Mavar Tarhnalamioe 11© Canlamicral © irvoy

% Layers

Map

Tarme nflleca

Satellite

B o . R

Stretch_321 &

Reset Map Layers
NDFI
e NDFI
1.0 oD @ ® o ®
;= " o
=]
N o
- T) | e
w o
% 0.5
L4
0.0
2005 2010 2015 2020
year
Red
® Red
1,000 0
[]
8 00 * e
© ° oo oo © .'.’:‘
heg 0o :. Sg o
® o I A o9 [3
° ° °
.
0
2005 2010 2015 2020
year

_images/sample42_landsat_fire2016_label2.jpg
1 Input and Outputs

| PathtoFC: projects/AREA2/bullo

i Save Folder: projects/AREA2/bullo

B
i Sample Interpretation

Previous 42

Change 5 2013 5

Fire in 2016 (Second [

Save Export All

Next

i Map Satellite

* Layers

and save sample
Export alt

when cént

Trananz 9010 CHEEY Airkuie | andeat fPanarmirie hiavar Tanhnnlinice 1180 C iRl R

Select Stretch &

Reset Map Layers
NDFI
e NDFI
1.0 oD @ ® o ® e | 3
» .
- | o
w o
Q 05
2
O]
0.0
2009 2010 2015 2020
year
Red
® Red
1,000 0
[]
8 00 * e
x© e oo %o o o [
(3]
heg 0o :. ¢ \’- $
e o I A o9 [3
° ° °
.
0
2005 2010 2015 2020
year

_images/sample42_GE_SL.jpg
NI VAR SR | y;‘-" R WL NP Satellite Stretch_321 %

+ J

Reset Map Layers

Input and Outputs NDFI

Pathto FC: projects/AREA2/bullo

Save Folder: projects/AREA2/bullo

Sample Interpretation

Previous 42 Next

Land Cover 5 Year 5
Any notes? Confidence? &

Change Type 5 None 5 None 5

Save Export All

Google

_images/sample42_landsat_2014_AfterSL_label2.jpg
Select Stretch &

Reset Map Layers

Recovery signal

NDFI
NDFI
Pathto FC: projects/AREA2/bullo : O

Save Folder: projects/AREA2/bullo

Sample Interpretation

Previous 42 Next

Change 5 2013 5
Confidence? &

Degradation 5 None %

Export All

_images/stack1.jpeg
time

_images/strataNotZoomed.jpg
[| Non-Foresty
Degradation N
Deforestation 4, |

_images/sampleUnitsCombined.jpg
Abaetetuba

W L e ot @
Cagpeta L
o} : L] o
Mocajuba @) -
o L]
o - : :
Sandicln f
] [] Tu\%ndm earag?mmas °
L ..0)
oo ® °
LI A w
© d ® .
:ur& LJ :.. L
o
g. L] ° k]
L]
0 ® @
oo - 2
1% °« 2)
oy
e Rondol
L 2 do Parrab b
s
- Aqa\\én%a
Itufs ozmgL NS

Maraba

_images/timeSeries1.jpg
Scripts Get Link Run || Reset - [23 Console

w2 - Imports (1 entry) Use print(...) to write to this
» le: Tabl .
"~ examples var sanple: Table console
B acretrazil 1- /= Example time series of degradation events 1
acreBrazil Author: Eric Bullock .

2
i timeSeries 3 bullocke@bu.edu
& changeDetection 3 github. con/bul locke/coded
5
6

B changeUtils ks

Voo seteite J§ EXaMPles of forest degradation events in Landsat historical time series

Select an example or click on the map

Choose an example... %

2.

_images/timeSeries3.jpg
Examples of forest degradation events in Landsat historical time series

Select an example or click on the map

Logging road in Acre, Brazil +

WA s 2,

Click a point on the time series plot to visualize corresponding Landsat image

NDFI

201 2015 2020

201 2015 2020

_images/studyArea.jpg

_images/thick_and_thin_exs.jpg
Observed vs Predicted NDFI (Training Period)
® NDFlI = Predicted NDFI

1.0 rom I T — — I e — W —

E 0.5
2

0.0

-0.5

Jul 2008 Jan 2009 Jul 2009 Jan 2010 Jul 2010
Observed vs Predicted NDFI (Training Period)
® NDFI = Predicted NDFI
1.0 . °
L) [

T 05 e
g O

0.0

-0.5

Jul 2008 Jan 2009 Jul 2009 Jan 2010 Jul 2010

_static/ajax-loader.gif

_images/training.png

_images/trainingConfig.jpg
Configure geometry import

Name Color
forest #d63000
Importas
FeatursCollection ~
Propertes
Iabel 1
+Add property

